Postingan

Intergral Fungsi Aljabar

Gambar
A. INTEGRAL TAK TENTU Integral merupakan anti turunan atau kebalikan dari turunan yang berfungsi untuk menentukan daerah, volume, titik pusat, dan lainnya. Kalau suatu fungsi f(x) dibalik menjadi f’(x) maka itu merupakan turunan. Nah, jika f’(x) dibalik lagi menjadi f(x), maka itu merupakan integral.  Sebelum ke rumus integral tak tentu, perlu paham konsep turunan nih. Nih kasih bayangin dikit tentang turunan secara umum. y= X3 Turunan dari soal ini berapa? dydx = 3×2 Setelah diturunkan seperti ini, lalu dikali silang. dy = 3×2 dx  d(X3) = 3×2 dx Bisa dilihat ya, y diganti dengan X3 Nah, dari sini bisa kita simpulkan ya cara mencari turunan bentuknya akan seperti ini nih. Turunan dari X2 akan menjadi d(X2) = 2x dx Oke, konsep turunan udah ingat lanjut ke materi integral tak tentu lagi. Coba deh perhatikan antara turunan dan integral di bawah ini. Sekarang kita balik, dikalikan silang ya: df(x) = f’(x)dx Kita tambahkan aja lambang integral (∫), menjadi: ∫df(x) = ∫f’...

REMED PTS

Gambar

Turunan fungsi Aljabar

Gambar
Turunan fungsi aljabar adalah fungsi baru hasil penurunan pangkat dari fungsi sebelumnya menurut aturan yang telah ditetapkan. Jika diimplementasikan di dalam grafik fungsi, turunan ini merupakan gradien garis singgung terhadap grafik di titik tertentu. Turunan fungsi atau juga bisa disebut dengan diferensial adalah fungsi lain dari suatu fungsi sebelumnya, contohnya fungsi f dijadikan f' yang mempunyai nilai tidak memakai aturan dan hasil dari fungsi akan berubah sesuai dengan variabel yang dimasukan, atau secara umum suatu besaran yang berubah seiring perubahan besaran lainnya. Proses dalam menemukan turunan disebut sebagai diferensiasi. Lalu untuk pengertian turunan aljabar adalah perluasan dari materi limit fungsi. Notasi turunan fungsi aljabar seperti berikut: Rumus Turunan Aljabar Setelah memahami tentang pengertian dari turunan fungsi aljabar, hal yang perlu Sobat Pintar pelajari adalah rumus dari turunan fungsi aljabar. Rumus turunan fungsi aljabar ini terbagi m...

Baeisan dan Deret

Gambar
BARISAN DAN DERET Barisan merupakan suatu runtutan angka atau bilangan dari kiri ke kanan dengan pola serta aturan tertentu. Barisan berkaitan erat dengan deret. Jika barisan adalah kelompok angka atau bilangan yang berurutan, deret merupakan jumlah dari suku-suku pada barisan. Barisan dan deret terbagi menjadi beberapa macam.   a) Barisan dan Deret Aritmatika Barisan aritmetika merupakan barisan bilangan yang memiliki beda atau selisih tetap antara dua suku yang berurutan. Contoh Barisan Aritmetika: Rumus untuk menentukan suku ke-n dari barisan aritmetika: Rumus untuk mencari beda pada barisan aritmetika Berbeda dengan barisan, deret merupakan hasil penjumlahan pada barisan aritmetika. Namun, deret tidak selalu menjumlahkan keseluruhan suku dalam suatu barisan. Rumus deret hanya menjumlahkan barisan aritmetikanya hanya sampai suku yang diperintahkan saja. Contoh deret aritmetika: 2 + 4 + 6 + 8 + 10 + … 24 + 20 + 16 + 12 + … Rumus jumlah n suku p...

Limit

Gambar
A. Limit Fungsi Aljabar  Pada dasarnya, limit adalah suatu nilai yang menggunakan pendekatan fungsi ketika hendak mendekati nilai tertentu. Singkatnya, limit ini dianggap sebagai nilai yang menuju suatu batas. Disebut sebagai “batas” karena memang ‘dekat’ tetapi tidak bisa dicapai. Lalu, mengapa limit tersebut harus didekati? Karena suatu fungsi biasanya tidak terdefinisikan pada titik-titik tertentu. Meskipun suatu fungsi itu seringkali tidak terdefinisikan oleh titik-titik tertentu, tetapi masih dapat dicari tahu berapa nilai yang dapat didekati oleh fungsi tersebut, terlebih ketika titik tertentu semakin didekati oleh “limit”.   Misalkan f adalah fungsi yang terdefinisi pada interval tertentu yang memuat a, kecuali di a itu sendiri, sedangkan L adalah suatu bilangan riil. Maka fungsi f dapat dikatakan memiliki limit L untuk x mendekati a, sehingga ditulis   Namun, hanya jika untuk setiap bilangan kecil ε > 0 terdapat bilangan δ > 0 sedemikian rupa sehingga j...